216 research outputs found

    Poynting's theorem and energy conservation in the propagation of light in bounded media

    Full text link
    Starting from the Maxwell-Lorentz equations, Poynting's theorem is reconsidered. The energy flux vector is introduced as S_e=(E x B)/mu_0 instead of E x H, because only by this choice the energy dissipation can be related to the balance of the kinetic energy of the matter subsystem. Conservation of the total energy as the sum of kinetic and electromagnetic energy follows. In our discussion, media and their microscopic nature are represented exactly by their susceptibility functions, which do not necessarily have to be known. On this footing, it can be shown that energy conservation in the propagation of light through bounded media is ensured by Maxwell's boundary conditions alone, even for some frequently used approximations. This is demonstrated for approaches using additional boundary conditions and the dielectric approximation in detail, the latter of which suspected to violate energy conservation for decades.Comment: 5 pages, RevTeX4, changes: complete rewrit

    Persistent Current of Free Electrons in the Plane

    Full text link
    Predictions of Akkermans et al. are essentially changed when the Krein spectral displacement operator is regularized by means of zeta function. Instead of piecewise constant persistent current of free electrons on the plane one has a current which varies linearly with the flux and is antisymmetric with regard to all time preserving values of α\alpha including 1/21/2. Different self-adjoint extensions of the problem and role of the resonance are discussed.Comment: (Comment on "Relation between Persistent Currents and the Scattering Matrix", Phys. Rev. Lett. {\bf 66}, 76 (1991)) plain latex, 4pp., IPNO/TH 94-2

    Propagation of Nonclassical Radiation through a Semiconductor Slab

    Full text link
    Based on a microscopic derivation of the emission spectra of a bulk semiconductor we arrive at a clear physical interpretation of the noise current operators in macroscopic quantum electrodynamics. This opens the possibility to study medium effects on nonclassical radiation propagating through an absorbing or amplifying semiconductor. As an example, the propagation of an incident squeezed vacuum is analyzed.Comment: 4 pages, 2 figure

    A quantum measure of coherence and incompatibility

    Full text link
    The well-known two-slit interference is understood as a special relation between observable (localization at the slits) and state (being on both slits). Relation between an observable and a quantum state is investigated in the general case. It is assumed that the amount of ceherence equals that of incompatibility between observable and state. On ground of this, an argument is peresented that leads to a natural quantum measure of coherence, called "coherence or incompatibility information". Its properties are studied in detail making use of 'the mixing property of relative entropy' derived in this article. A precise relation between the measure of coherence of an observable and that of its coarsening is obtained and discussed from the intutitive point of view. Convexity of the measure is proved, and thus the fact that it is an information entity is established. A few more detailed properties of coherence information are derived with a view to investigate final-state entanglement in general repeatable measurement, and, more importantly, general bipartite entanglement in follow ups of this study.Comment: 19 GS pages; supercedes quant-ph/030921

    Mixed-state twin observables

    Get PDF
    Twin observables, i.e. opposite subsystem observables A+ and A- that are indistinguishable in measurement in a given mixed or pure state W, are investigated in detail algebraicly and geometrically. It is shown that there is a far-reaching correspondence between the detectable (in W) spectral entities of the two operators. Twin observables are state-dependently quantum-logically equivalent, and direct subsystem measurement of one of them ipso facto gives rise to the indirect (i.e. distant) measurement of the other. Existence of nontrivial twins requires singularity of W. Systems in thermodynamic equilibrium do not admit subsystem twins. These observables may enable one to simplify the matrix representing W.Comment: 13 page

    Classical Scattering for a driven inverted Gaussian potential in terms of the chaotic invariant set

    Full text link
    We study the classical electron scattering from a driven inverted Gaussian potential, an open system, in terms of its chaotic invariant set. This chaotic invariant set is described by a ternary horseshoe construction on an appropriate Poincare surface of section. We find the development parameters that describe the hyperbolic component of the chaotic invariant set. In addition, we show that the hierarchical structure of the fractal set of singularities of the scattering functions is the same as the structure of the chaotic invariant set. Finally, we construct a symbolic encoding of the hierarchical structure of the set of singularities of the scattering functions and use concepts from the thermodynamical formalism to obtain one of the measures of chaos of the fractal set of singularities, the topological entropy.Comment: accepted in Phy. Rev.

    Generalized gradient expansions in quantum transport equations

    Get PDF
    Gradient expansions in quantum transport equations of a Kadanoff-Baym form have been reexamined. We have realized that in a consistent approach the expansion should be performed also inside of the self-energy in the scattering integrals of these equations. In the first perturbation order this internal expansion gives new correction terms to the generalized Boltzman equation. These correction terms are found here for several typical systems. Possible corrections to the theory of a linear response to weak electric fields are also discussed.Comment: 20 pages, latex, to appear in Journal of Statistical Physics, March (1997

    Coherent phenomena in semiconductors

    Full text link
    A review of coherent phenomena in photoexcited semiconductors is presented. In particular, two classes of phenomena are considered: On the one hand the role played by optically-induced phase coherence in the ultrafast spectroscopy of semiconductors; On the other hand the Coulomb-induced effects on the coherent optical response of low-dimensional structures. All the phenomena discussed in the paper are analyzed in terms of a theoretical framework based on the density-matrix formalism. Due to its generality, this quantum-kinetic approach allows a realistic description of coherent as well as incoherent, i.e. phase-breaking, processes, thus providing quantitative information on the coupled ---coherent vs. incoherent--- carrier dynamics in photoexcited semiconductors. The primary goal of the paper is to discuss the concept of quantum-mechanical phase coherence as well as its relevance and implications on semiconductor physics and technology. In particular, we will discuss the dominant role played by optically induced phase coherence on the process of carrier photogeneration and relaxation in bulk systems. We will then review typical field-induced coherent phenomena in semiconductor superlattices such as Bloch oscillations and Wannier-Stark localization. Finally, we will discuss the dominant role played by Coulomb correlation on the linear and non-linear optical spectra of realistic quantum-wire structures.Comment: Topical review in Semiconductor Science and Technology (in press) (Some of the figures are not available in electronic form

    Theory and simulation of quantum photovoltaic devices based on the non-equilibrium Green's function formalism

    Get PDF
    This article reviews the application of the non-equilibrium Green's function formalism to the simulation of novel photovoltaic devices utilizing quantum confinement effects in low dimensional absorber structures. It covers well-known aspects of the fundamental NEGF theory for a system of interacting electrons, photons and phonons with relevance for the simulation of optoelectronic devices and introduces at the same time new approaches to the theoretical description of the elementary processes of photovoltaic device operation, such as photogeneration via coherent excitonic absorption, phonon-mediated indirect optical transitions or non-radiative recombination via defect states. While the description of the theoretical framework is kept as general as possible, two specific prototypical quantum photovoltaic devices, a single quantum well photodiode and a silicon-oxide based superlattice absorber, are used to illustrated the kind of unique insight that numerical simulations based on the theory are able to provide.Comment: 20 pages, 10 figures; invited review pape

    Theory of Circle Maps and the Problem of One-Dimensional Optical Resonator with a Periodically Moving Wall

    Full text link
    We consider the electromagnetic field in a cavity with a periodically oscillating perfectly reflecting boundary and show that the mathematical theory of circle maps leads to several physical predictions. Notably, well-known results in the theory of circle maps (which we review briefly) imply that there are intervals of parameters where the waves in the cavity get concentrated in wave packets whose energy grows exponentially. Even if these intervals are dense for typical motions of the reflecting boundary, in the complement there is a positive measure set of parameters where the energy remains bounded.Comment: 34 pages LaTeX (revtex) with eps figures, PACS: 02.30.Jr, 42.15.-i, 42.60.Da, 42.65.Y
    • …
    corecore